Orion
path orion.primitives.timeseries_errors.regression_errors
orion.primitives.timeseries_errors.regression_errors
description this primitive computes an array of absolute errors comparing predictions and expected output. Optionally smooth them using EWMA.
see json.
argument
type
description
parameters
y
numpy.ndarray
ground truth
y_hat
predicted values
hyperparameters
smooth
bool
indicates whether the returned errors should be smoothed with EWMA
smoothing_window
float
size of the smoothing window, expressed as a proportion of the total
mask
indicates whether the returned errors should be masked with the minimum error value
masking_window
size of the masking window, expressed as a proportion of the total
output
errors
array of errors
In [1]: import numpy as np In [2]: from mlstars import load_primitive In [3]: primitive = load_primitive('orion.primitives.timeseries_errors.regression_errors') In [4]: y = np.array([[1]] * 100) In [5]: y_hat = np.array([[.99]] * 100) In [6]: errors = primitive.produce(y=y, y_hat=y_hat) In [7]: print("average error value: {:.2f}".format(errors.mean())) average error value: 0.01