Orion
path orion.primitives.timeseries_errors.reconstruction_errors
orion.primitives.timeseries_errors.reconstruction_errors
description this primitive computes an array of errors comparing reconstructed and expected output. There are three main approaches for computing the discrepancies: point-wise, area, and dtw.
see json.
argument
type
description
parameters
y
numpy.ndarray
ground truth
y_hat
predicted values
hyperparameters
step_size
int
indicates the number of steps between windows in the predicted values
score_window
indicates the size of the window over which the scores are calculated
rec_error_type
str
reconstruction error types, can be one of ["point", "area", "dtw"]
["point", "area", "dtw"]
smooth
bool
indicates whether the returned errors should be smoothed
smoothing_window
float
size of the smoothing window, expressed as a proportion of the total
output
errors
array of errors
In [1]: import numpy as np In [2]: from mlstars import load_primitive In [3]: primitive = load_primitive('orion.primitives.timeseries_errors.reconstruction_errors') In [4]: y = np.array([[1]] * 100) In [5]: y_hat = np.array([[.99]] * 100) In [6]: errors, predictions = primitive.produce(y=y, y_hat=y_hat) In [7]: print("average error value: {:.2f}".format(errors.mean())) average error value: 0.01