Orion
path: orion.primitives.timeseries_preprocessing.fillna
orion.primitives.timeseries_preprocessing.fillna
description: this primitive is an iterative imputation transformer for filling missing values using pandas.fillna.
pandas.fillna
see json.
argument
type
description
parameters
X
numpy.ndarray
n-dimensional sequence of values
hyperparameters
value
int, dict, pandas.Series, or pandas.DataFrame
int
dict
pandas.Series
pandas.DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list
method
str, or list
str
list
String or list of strings describing whether to use forward or backward fill. pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use next valid observation to fill gap. Otherwise use None to fill with desired value. Possible values include ['backfill', 'bfill', 'pad', 'ffill', None]
None
['backfill', 'bfill', 'pad', 'ffill', None]
axis
int, or str
Axis along which to fill missing value. Possible values include 0 or “index”, 1 or “columns”
limit
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
downcast
A dict of item->dtype of what to downcast if possible, or the string “infer” which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
output
Array of input sequence with imputed values
In [1]: import numpy as np In [2]: from mlstars import load_primitive In [3]: X = np.array([1] * 4 + [np.nan]).reshape(-1, 1) In [4]: primitive = load_primitive('orion.primitives.timeseries_preprocessing.fillna', ...: arguments={"X": X, "value": 0}) ...: In [5]: primitive.fit() In [6]: primitive.produce(X=X) Out[6]: array([[1.], [1.], [1.], [1.], [0.]])