Orion
path: sklearn.impute.SimpleImputer
sklearn.impute.SimpleImputer
description: this primitive is an imputation transformer for filling missing values.
see json.
argument
type
description
parameters
X
numpy.ndarray
n-dimensional sequence of values
hyperparameters
missing_values
int, float, str, numpy.nan, or None
int
float
str
numpy.nan
None
the placeholder for the missing values. All occurrences of missing_values will be imputed
strategy
the imputation strategy. If mean, then replace missing values using the mean along each column. Can only be used with numeric data. If median, then replace missing values using the median along each column. Can only be used with numeric data. If most_frequent, then replace missing using the most frequent value along each column. Can be used with strings or numeric data. If constant, then replace missing values with fill_value. Can be used with strings or numeric data.
mean
median
most_frequent
constant
fill_value
int, float, or str
when strategy == "constant", fill_value is used to replace all occurrences of missing_values. If left to the default, fill_value will be 0 when imputing numerical data and “missing_value” for strings or object data types
strategy == "constant"
verbose
bool
controls the verbosity of the imputer
copy
if True, a copy of X will be created
output
a transformed version of X
In [1]: import numpy as np In [2]: from mlstars import load_primitive In [3]: X = np.array([1] * 4 + [np.nan]).reshape(-1, 1) In [4]: primitive = load_primitive('sklearn.impute.SimpleImputer', ...: arguments={"X": X}) ...: In [5]: primitive.fit() In [6]: primitive.produce(X=X) Out[6]: array([[1.], [1.], [1.], [1.], [1.]])