Orion
orion.primitives.tadgan.
TadGAN
TadGAN model for time series reconstruction.
layers_encoder (list) – List containing layers of encoder.
layers_generator (list) – List containing layers of generator.
layers_critic_x (list) – List containing layers of critic_x.
layers_critic_z (list) – List containing layers of critic_z.
input_shape (tuple) – Optional. Tuple denoting the shape of an input sample.
latent_dim (int) – Optional. Integer denoting dimension of latent space. Default 20.
target_shape (tuple) – Optional. Tuple denoting the shape of an output sample.
encoder_input_shape (tuple) – Shape of encoder input.
generator_input_shape (tuple) – Shape of generator input.
critic_x_input_shape (tuple) – Shape of critic_x input.
critic_z_input_shape (tuple) – Shape of critic_z input.
optimizer (str) – String denoting the keras optimizer.
learning_rate (float) – Optional. Float denoting the learning rate of the optimizer. Default 0.005.
epochs (int) – Optional. Integer denoting the number of epochs. Default 50.
latent_dim – Optional. Integer denoting dimension of latent space. Default 20.
iterations_critic (int) – Optional. Integer denoting the number of critic training steps per one Generator/Encoder training step. Default 5.
shuffle (bool) – Whether to shuffle the dataset for each epoch. Default True.
verbose (int) – Verbosity mode where 0 = silent, 1 = progress bar, 2 = one line per epoch. Default 0.
detailed_losses (bool) – Whether to output all loss values in verbose mode. Default False.
**hyperparameters (dict) – Optional. Dictionary containing any additional inputs.
__init__
Initialize the TadGAN model.
Methods
__init__(layers_encoder, layers_generator, …)
fit(X[, y])
fit
Fit the TadGAN model.
predict(X[, y])
predict
Predict using TadGAN model.