Source code for orion.primitives.tadgan

# -*- coding: utf-8 -*-

import logging
import math
import tempfile
from typing import Optional, Union

import numpy as np
import pandas as pd
import tensorflow as tf
from mlstars.utils import import_object
from numpy import ndarray
from scipy import stats
from tensorflow.keras import Model

from orion.primitives.timeseries_errors import reconstruction_errors

LOGGER = logging.getLogger(__name__)
tf.keras.backend.set_floatx('float64')

LOSS_NAMES = [
    ['cx_loss', 'cx_real', 'cx_fake', 'cx_gp'],
    ['cz_loss', 'cz_real', 'cz_fake', 'cz_gp'],
    ['eg_loss', 'eg_cx_fake', 'eg_cz_fake', 'eg_mse']
]


def build_layer(layer: dict, hyperparameters: dict):
    layer_class = import_object(layer['class'])
    layer_kwargs = layer['parameters'].copy()
    # TODO: Upgrade to using tf.keras.layers.Wrapper in mlprimitives.
    if issubclass(layer_class, tf.keras.layers.Wrapper):
        layer_kwargs['layer'] = build_layer(layer_kwargs['layer'], hyperparameters)

    for key, value in layer_kwargs.items():
        if isinstance(value, str):
            layer_kwargs[key] = hyperparameters.get(value, value)

    return layer_class(**layer_kwargs)


[docs]class TadGAN: """TadGAN model for time series reconstruction. Args: layers_encoder (list): List containing layers of encoder. layers_generator (list): List containing layers of generator. layers_critic_x (list): List containing layers of critic_x. layers_critic_z (list): List containing layers of critic_z. input_shape (tuple): Optional. Tuple denoting the shape of an input sample. latent_dim (int): Optional. Integer denoting dimension of latent space. Default 20. target_shape (tuple): Optional. Tuple denoting the shape of an output sample. encoder_input_shape (tuple): Shape of encoder input. generator_input_shape (tuple): Shape of generator input. critic_x_input_shape (tuple): Shape of critic_x input. critic_z_input_shape (tuple): Shape of critic_z input. optimizer (str): String denoting the keras optimizer. learning_rate (float): Optional. Float denoting the learning rate of the optimizer. Default 0.005. epochs (int): Optional. Integer denoting the number of epochs. Default 50. latent_dim (int): Optional. Integer denoting dimension of latent space. Default 20. iterations_critic (int): Optional. Integer denoting the number of critic training steps per one Generator/Encoder training step. Default 5. shuffle (bool): Whether to shuffle the dataset for each epoch. Default True. verbose (int): Verbosity mode where 0 = silent, 1 = progress bar, 2 = one line per epoch. Default 0. detailed_losses (bool): Whether to output all loss values in verbose mode. Default False. **hyperparameters (dict): Optional. Dictionary containing any additional inputs. """ @staticmethod def _build_model(hyperparameters: dict, layers: list, input_shape: tuple, name: str) -> Model: x = tf.keras.layers.Input(shape=input_shape) model = tf.keras.Sequential(name=name) for layer in layers: built_layer = build_layer(layer, hyperparameters) model.add(built_layer) return Model(x, model(x)) @staticmethod def _wasserstein_loss(y_true, y_pred): return tf.reduce_mean(y_true * y_pred) @staticmethod def _gradient_penalty_loss_wrapper(critic): def _gradient_penalty_loss(real, fake): # Random weighted average to create interpolated signals. batch_size = tf.shape(real)[0] alpha = tf.random.uniform([batch_size, 1, 1], dtype=tf.float64) interpolated = (alpha * real) + ((1 - alpha) * fake) # Get the critic output for this interpolated signal. with tf.GradientTape() as gp_tape: gp_tape.watch(interpolated) validity_interpolated = critic(interpolated) # Calculate the gradients w.r.t to this interpolated signal. grads = gp_tape.gradient(validity_interpolated, [interpolated])[0] # Calculate the norm of the gradients. norm = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=np.arange(1, len(grads.shape)))) gradient_penalty = tf.reduce_mean((norm - 1.0) ** 2) return gradient_penalty return _gradient_penalty_loss
[docs] def __init__(self, layers_encoder: list, layers_generator: list, layers_critic_x: list, layers_critic_z: list, optimizer: str, input_shape: Optional[tuple] = None, target_shape: Optional[tuple] = None, latent_dim: int = 20, learning_rate: float = 0.005, epochs: int = 50, batch_size: int = 64, iterations_critic: int = 5, shuffle: bool = True, detailed_losses: bool = False, verbose: Union[int, bool] = True, **hyperparameters): """Initialize the TadGAN model.""" super(TadGAN, self).__init__() # Required model hyperparameters to construct model. self.layers_encoder, self.layers_generator = layers_encoder, layers_generator self.layers_critic_x, self.layers_critic_z = layers_critic_x, layers_critic_z # Optional model hyperparameters. self.shape = input_shape self.latent_dim = latent_dim self.target_shape = target_shape self.hyperparameters = hyperparameters # Model training hyperparameters. self.learning_rate = learning_rate self.optimizer = optimizer self.epochs = epochs self.batch_size = batch_size self.iterations_critic = iterations_critic self.shuffle = shuffle self.verbose = verbose self.detailed_losses = detailed_losses self.fitted = False
def __getstate__(self): networks = ['critic_x', 'critic_z', 'encoder', 'generator'] modules = ['critic_x_model', 'critic_z_model', 'encoder_generator_model', 'critic_x_optimizer', 'critic_z_optimizer', 'encoder_generator_optimizer'] state = self.__dict__.copy() for module in modules: del state[module] for network in networks: with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=False) as fd: tf.keras.models.save_model(state.pop(network), fd.name, overwrite=True) state[network + '_str'] = fd.read() return state def __setstate__(self, state: dict): networks = ['critic_x', 'critic_z', 'encoder', 'generator'] for network in networks: with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=False) as fd: fd.write(state.pop(network + '_str')) fd.flush() state[network] = tf.keras.models.load_model(fd.name) self.__dict__ = state def _augment_hyperparameters(self, X: ndarray, y: ndarray, **kwargs) -> dict: shape = np.asarray(X)[0].shape length, input_dim = shape target_shape = np.asarray(y)[0].shape output_dim = target_shape[1] # Infers the shape. self.shape = self.shape or shape self.target_shape = self.target_shape or target_shape self.latent_shape = (self.latent_dim, output_dim) kwargs.update({ 'shape': self.shape, 'target_shape': self.target_shape, 'input_dim': input_dim, 'output_dim': output_dim, 'generator_reshape_dim': length // 2, 'generator_reshape_shape': (length // 2, output_dim), 'encoder_reshape_shape': self.latent_shape }) return kwargs def _set_shapes(self) -> None: self.encoder_input_shape = self.shape self.generator_input_shape = self.latent_shape self.critic_x_input_shape = self.target_shape self.critic_z_input_shape = self.latent_shape def _format_losses(self, losses: list) -> dict: """Format losses into dictionary mapping metric names to their current value.""" output = dict() if self.detailed_losses: for i in range(len(losses)): if not isinstance(losses[i], list): losses[i] = [losses[i]] for j in range(len(losses[i])): output[LOSS_NAMES[i][j]] = losses[i][j] else: for i in range(len(losses)): output[LOSS_NAMES[i][0]] = losses[i][0] return output def _build_tadgan(self, **kwargs) -> None: hyperparameters = self.hyperparameters.copy() hyperparameters.update(kwargs) # Models self.encoder = self._build_model( hyperparameters, self.layers_encoder, self.encoder_input_shape, name='encoder') self.generator = self._build_model( hyperparameters, self.layers_generator, self.generator_input_shape, name='generator') self.critic_x = self._build_model( hyperparameters, self.layers_critic_x, self.critic_x_input_shape, name='critic_x') self.critic_z = self._build_model( hyperparameters, self.layers_critic_z, self.critic_z_input_shape, name='critic_z') # Optimizers self.critic_x_optimizer = import_object(self.optimizer)(self.learning_rate) self.critic_z_optimizer = import_object(self.optimizer)(self.learning_rate) self.encoder_generator_optimizer = import_object(self.optimizer)(self.learning_rate) x = tf.keras.Input(shape=self.shape) y = tf.keras.Input(shape=self.target_shape) z = tf.keras.Input(shape=self.latent_shape) self.generator.trainable = False self.encoder.trainable = False # Critic x model x_ = self.generator(z) cx_real = self.critic_x(y) cx_fake = self.critic_x(x_) self.critic_x_model = Model(inputs=[y, z], outputs=[cx_real, cx_fake, x_]) self.critic_x_model.compile(loss=[self._wasserstein_loss, self._wasserstein_loss, self._gradient_penalty_loss_wrapper(self.critic_x) ], optimizer=self.critic_x_optimizer, loss_weights=[1, 1, 10]) # Critic z model z_ = self.encoder(x) cz_real = self.critic_z(z) cz_fake = self.critic_z(z_) self.critic_z_model = Model(inputs=[x, z], outputs=[cz_real, cz_fake, z_]) self.critic_z_model.compile(loss=[self._wasserstein_loss, self._wasserstein_loss, self._gradient_penalty_loss_wrapper(self.critic_z) ], optimizer=self.critic_z_optimizer, loss_weights=[1, 1, 10]) self.critic_x.trainable = False self.critic_z.trainable = False self.generator.trainable = True self.encoder.trainable = True x_ = self.generator(z) cx_fake = self.critic_x(x_) z_ = self.encoder(x) cz_fake = self.critic_z(z_) x_rec_ = self.generator(z_) self.encoder_generator_model = Model([x, z], [cx_fake, cz_fake, x_rec_]) self.encoder_generator_model.compile(loss=[self._wasserstein_loss, self._wasserstein_loss, 'mse' ], optimizer=self.encoder_generator_optimizer, loss_weights=[1, 1, 10]) def _fit(self, data: tuple): X_train, y_train = data minibatch_size = self.batch_size * self.iterations_critic num_minibatch = X_train.shape[0] // minibatch_size z_shape = (self.batch_size, self.latent_shape[0], self.latent_shape[1]) # Wasserstein GAN formulation. fake = tf.ones((self.batch_size, 1), dtype=tf.float64) real = -tf.ones((self.batch_size, 1), dtype=tf.float64) indices = np.arange(X_train.shape[0]) for epoch in range(1, self.epochs + 1): if self.shuffle: np.random.shuffle(indices) x_shuffled = X_train[indices] y_shuffled = y_train[indices] epoch_cx_loss, epoch_cz_loss, epoch_eg_loss = [], [], [] for i in range(num_minibatch): x_minibatch = x_shuffled[i * minibatch_size: (i + 1) * minibatch_size] y_minibatch = y_shuffled[i * minibatch_size: (i + 1) * minibatch_size] for j in range(self.iterations_critic): x = x_minibatch[j * self.batch_size: (j + 1) * self.batch_size] y = y_minibatch[j * self.batch_size: (j + 1) * self.batch_size] z = tf.random.normal(shape=z_shape, dtype=tf.float64) epoch_cx_loss.append( self.critic_x_model.train_on_batch([y, z], [real, fake, y])) epoch_cz_loss.append( self.critic_z_model.train_on_batch([x, z], [real, fake, z])) epoch_eg_loss.append( self.encoder_generator_model.train_on_batch([x, z], [real, real, y])) epoch_cx_loss = np.round(np.mean(np.array(epoch_cx_loss), axis=0), 4) epoch_cz_loss = np.round(np.mean(np.array(epoch_cz_loss), axis=0), 4) epoch_eg_loss = np.round(np.mean(np.array(epoch_eg_loss), axis=0), 4) losses = self._format_losses([epoch_cx_loss, epoch_cz_loss, epoch_eg_loss]) if self.verbose: print('Epoch: {}/{}, Losses: {}'.format(epoch, self.epochs, losses)) def fit(self, X: ndarray, y: Optional[ndarray] = None, **kwargs) -> None: """Fit the TadGAN model. Args: X (ndarray): N-dimensional array containing the input training sequences for the model. y (ndarray): N-dimensional array containing the target sequences we want to reconstruct. **kwargs (dict): Optional. Additional inputs. """ if y is None: y = X.copy() X, y = X.astype(np.float64), y.astype(np.float64) # Infer dimensions and compile model. if not self.fitted: kwargs = self._augment_hyperparameters(X, y, **kwargs) self._set_shapes() self._build_tadgan(**kwargs) self._fit((X, y)) self.fitted = True def predict(self, X: ndarray, y: Optional[ndarray] = None) -> tuple: """Predict using TadGAN model. Args: X (ndarray): N-dimensional array containing the input training sequences for the model. y (ndarray): N-dimensional array containing the target sequences we want to reconstruct. Returns: ndarray: N-dimensional array containing the reconstructions for each input sequence. ndarray: N-dimensional array containing the critic scores for each input sequence. """ if y is None: y = X.copy() X, y = X.astype(np.float64), y.astype(np.float64) z_ = self.encoder.predict(X) y_hat = self.generator.predict(z_) critic = self.critic_x.predict(y) return y_hat, critic
def _compute_critic_score(critics: ndarray, smooth_window: int) -> ndarray: """Compute an array of anomaly scores. Args: critics (ndarray): Critic values. smooth_window (int): Smooth window that will be applied to compute smooth errors. Returns: ndarray: Array of anomaly scores. """ critics = np.asarray(critics) l_quantile = np.quantile(critics, 0.25) u_quantile = np.quantile(critics, 0.75) in_range = np.logical_and(critics >= l_quantile, critics <= u_quantile) critic_mean = np.mean(critics[in_range]) critic_std = np.std(critics) z_scores = np.absolute((np.asarray(critics) - critic_mean) / critic_std) + 1 z_scores = pd.Series(z_scores).rolling( smooth_window, center=True, min_periods=smooth_window // 2).mean().values return z_scores
[docs]def score_anomalies(y: ndarray, y_hat: ndarray, critic: ndarray, index: ndarray, score_window: int = 10, critic_smooth_window: int = None, error_smooth_window: int = None, smooth: bool = True, rec_error_type: str = "point", comb: str = "mult", lambda_rec: float = 0.5) -> tuple: """Compute an array of anomaly scores. Anomaly scores are calculated using a combination of reconstruction error and critic score. Args: y (ndarray): Ground truth. y_hat (ndarray): Predicted values. Each timestamp has multiple predictions. index (ndarray): time index for each y (start position of the window) critic (ndarray): Critic score. Each timestamp has multiple critic scores. score_window (int): Optional. Size of the window over which the scores are calculated. If not given, 10 is used. critic_smooth_window (int): Optional. Size of window over which smoothing is applied to critic. If not given, 200 is used. error_smooth_window (int): Optional. Size of window over which smoothing is applied to error. If not given, 200 is used. smooth (bool): Optional. Indicates whether errors should be smoothed. If not given, `True` is used. rec_error_type (str): Optional. The method to compute reconstruction error. Can be one of `["point", "area", "dtw"]`. If not given, 'point' is used. comb (str): Optional. How to combine critic and reconstruction error. Can be one of `["mult", "sum", "rec"]`. If not given, 'mult' is used. lambda_rec (float): Optional. Used if `comb="sum"` as a lambda weighted sum to combine scores. If not given, 0.5 is used. Returns: ndarray: Array of anomaly scores. """ critic_smooth_window = critic_smooth_window or math.trunc(y.shape[0] * 0.01) error_smooth_window = error_smooth_window or math.trunc(y.shape[0] * 0.01) step_size = 1 # expected to be 1 true_index = index # no offset true = [item[0] for item in y.reshape((y.shape[0], -1))] for item in y[-1][1:]: true.extend(item) critic_extended = list() for c in critic: critic_extended.extend(np.repeat(c, y_hat.shape[1]).tolist()) critic_extended = np.asarray(critic_extended).reshape((-1, y_hat.shape[1])) critic_kde_max = [] pred_length = y_hat.shape[1] num_errors = y_hat.shape[1] + step_size * (y_hat.shape[0] - 1) for i in range(num_errors): critic_intermediate = [] for j in range(max(0, i - num_errors + pred_length), min(i + 1, pred_length)): critic_intermediate.append(critic_extended[i - j, j]) if len(critic_intermediate) > 1: discr_intermediate = np.asarray(critic_intermediate) try: critic_kde_max.append(discr_intermediate[np.argmax( stats.gaussian_kde(discr_intermediate)(critic_intermediate))]) except np.linalg.LinAlgError: critic_kde_max.append(np.median(discr_intermediate)) else: critic_kde_max.append(np.median(np.asarray(critic_intermediate))) # Compute critic scores critic_scores = _compute_critic_score(critic_kde_max, critic_smooth_window) # Compute reconstruction scores rec_scores, predictions = reconstruction_errors( y, y_hat, step_size, score_window, error_smooth_window, smooth, rec_error_type) rec_scores = stats.zscore(rec_scores) rec_scores = np.clip(rec_scores, a_min=0, a_max=None) + 1 # Combine the two scores if comb == "mult": final_scores = np.multiply(critic_scores, rec_scores) elif comb == "sum": final_scores = (1 - lambda_rec) * (critic_scores - 1) + lambda_rec * (rec_scores - 1) elif comb == "rec": final_scores = rec_scores else: raise ValueError( 'Unknown combination specified {}, use "mult", "sum", or "rec" instead.'.format(comb)) true = [[t] for t in true] return final_scores, true_index, true, predictions