Orion
path: mlstars.custom.timeseries_preprocessing.time_segments_aggregate
mlstars.custom.timeseries_preprocessing.time_segments_aggregate
description: this primitive creates an equi-spaced time series by aggregating values over fixed specified interval.
see json.
argument
type
description
parameters
X
numpy.ndarray or pandas.DataFrame
numpy.ndarray
pandas.DataFrame
n-dimensional sequence of values
time_column
str
column of X that contains time values
hyperparameters
interval
int
integer denoting time span to compute aggregation of
method
string describing aggregation method or list of strings describing multiple aggregation methods. If not given, mean is used
output
sequence of aggregated values, one column for each aggregation method
index
sequence of index values (first index of each aggregated segment)
In [1]: from mlstars import load_primitive In [2]: primitive = load_primitive('mlstars.custom.timeseries_preprocessing.time_segments_aggregate', ...: arguments={"time_column": "timestamp", "interval":10, "method":'mean'}) ...: In [3]: df = pd.DataFrame({ ...: 'timestamp': list(range(50)), ...: 'value': [1] * 50}) ...: In [4]: X, index = primitive.produce(X=df) In [5]: pd.DataFrame({"timestamp": index, "value": X[:, 0]}) Out[5]: timestamp value 0 0 1.0 1 10 1.0 2 20 1.0 3 30 1.0 4 40 1.0