ARIMAΒΆ

path: statsmodels.tsa.arima_model.Arima

description: this is an Autoregressive Integrated Moving Average (ARIMA) prediction model.

see json.

argument

type

description

parameters

X

numpy.ndarray

n-dimensional array containing the input sequences for the model

hyperparameters

steps

int

number of forward steps to predict

p

int

the number of autoregressive parameters to use

d

int

the number of differences to use

q

int

the number of moving average (MA) parameters to use

output

y

numpy.ndarray

predicted values

In [1]: import numpy as np

In [2]: from mlstars import load_primitive

In [3]: X = np.array(range(100)).reshape(-1, 1)

In [4]: primitive = load_primitive('statsmodels.tsa.arima_model.Arima',
   ...:     arguments={"X": X, "steps": 1, })
   ...: 

In [5]: primitive.produce(X=X)
Out[5]: array([99.99999478])