Orion
path: orion.primitives.aer.AER
orion.primitives.aer.AER
description: this an autoencoder-based model capable of creating both prediction-based and reconstruction-based anomaly scores.
see json.
argument
type
description
parameters
X
numpy.ndarray
n-dimensional array containing the input sequences for the model
y
n-dimensional array containing the target sequences we want to reconstruct. Typically y is a signal from a selected set of channels from X.
hyperparameters
epochs
int
number of epochs to train the model. An epoch is an iteration over the entire X data provided
input_shape
tuple
tuple denoting the shape of an input sample
optimizer
str
string (name of optimizer) or optimizer instance. Default is keras.optimizers.Adam
keras.optimizers.Adam
learning_rate
float
float denoting the learning rate of the optimizer. Default is 0.001
batch_size
number of samples per gradient update. Default is 64
layers_encoder
list
list containing layers of encoder
layers_generator
list containing layers of generator
output
ry_hat
n-dimensional array containing the regression for each input sequence (reverse)
y_hat
n-dimensional array containing the reconstructions for each input sequence
fy_hat
n-dimensional array containing the regression for each input sequence (forward)
In [1]: import numpy as np In [2]: from mlstars import load_primitive In [3]: X = np.ones((64, 100, 1)) In [4]: y = X[:,:, [0]] # signal to reconstruct from X (channel 0) In [5]: primitive = load_primitive('orion.primitives.aer.AER', ...: arguments={"X": X, "y": y, "epochs": 1, "batch_size": 1}) ...: In [6]: primitive.fit() 1/51 [..............................] - ETA: 3:25 - loss: 0.8501 - tf.__operators__.getitem_loss: 0.8987 - tf.__operators__.getitem_1_loss: 0.8078 - tf.__operators__.getitem_2_loss: 0.8861 4/51 [=>............................] - ETA: 1s - loss: 0.5814 - tf.__operators__.getitem_loss: 0.6524 - tf.__operators__.getitem_1_loss: 0.4937 - tf.__operators__.getitem_2_loss: 0.6858 7/51 [===>..........................] - ETA: 0s - loss: 0.3997 - tf.__operators__.getitem_loss: 0.4641 - tf.__operators__.getitem_1_loss: 0.3049 - tf.__operators__.getitem_2_loss: 0.5248 10/51 [====>.........................] - ETA: 0s - loss: 0.3018 - tf.__operators__.getitem_loss: 0.3357 - tf.__operators__.getitem_1_loss: 0.2368 - tf.__operators__.getitem_2_loss: 0.3979 13/51 [======>.......................] - ETA: 0s - loss: 0.2604 - tf.__operators__.getitem_loss: 0.2586 - tf.__operators__.getitem_1_loss: 0.2352 - tf.__operators__.getitem_2_loss: 0.3128 16/51 [========>.....................] - ETA: 0s - loss: 0.2310 - tf.__operators__.getitem_loss: 0.2109 - tf.__operators__.getitem_1_loss: 0.2258 - tf.__operators__.getitem_2_loss: 0.2614 19/51 [==========>...................] - ETA: 0s - loss: 0.2049 - tf.__operators__.getitem_loss: 0.1814 - tf.__operators__.getitem_1_loss: 0.2027 - tf.__operators__.getitem_2_loss: 0.2330 22/51 [===========>..................] - ETA: 0s - loss: 0.1849 - tf.__operators__.getitem_loss: 0.1644 - tf.__operators__.getitem_1_loss: 0.1782 - tf.__operators__.getitem_2_loss: 0.2190 25/51 [=============>................] - ETA: 0s - loss: 0.1705 - tf.__operators__.getitem_loss: 0.1549 - tf.__operators__.getitem_1_loss: 0.1577 - tf.__operators__.getitem_2_loss: 0.2118 28/51 [===============>..............] - ETA: 0s - loss: 0.1594 - tf.__operators__.getitem_loss: 0.1485 - tf.__operators__.getitem_1_loss: 0.1414 - tf.__operators__.getitem_2_loss: 0.2062 31/51 [=================>............] - ETA: 0s - loss: 0.1498 - tf.__operators__.getitem_loss: 0.1426 - tf.__operators__.getitem_1_loss: 0.1286 - tf.__operators__.getitem_2_loss: 0.1996 34/51 [===================>..........] - ETA: 0s - loss: 0.1413 - tf.__operators__.getitem_loss: 0.1362 - tf.__operators__.getitem_1_loss: 0.1188 - tf.__operators__.getitem_2_loss: 0.1915 37/51 [====================>.........] - ETA: 0s - loss: 0.1339 - tf.__operators__.getitem_loss: 0.1296 - tf.__operators__.getitem_1_loss: 0.1119 - tf.__operators__.getitem_2_loss: 0.1823 40/51 [======================>.......] - ETA: 0s - loss: 0.1277 - tf.__operators__.getitem_loss: 0.1233 - tf.__operators__.getitem_1_loss: 0.1073 - tf.__operators__.getitem_2_loss: 0.1731 43/51 [========================>.....] - ETA: 0s - loss: 0.1224 - tf.__operators__.getitem_loss: 0.1178 - tf.__operators__.getitem_1_loss: 0.1035 - tf.__operators__.getitem_2_loss: 0.1647 46/51 [==========================>...] - ETA: 0s - loss: 0.1176 - tf.__operators__.getitem_loss: 0.1133 - tf.__operators__.getitem_1_loss: 0.0998 - tf.__operators__.getitem_2_loss: 0.1575 49/51 [===========================>..] - ETA: 0s - loss: 0.1133 - tf.__operators__.getitem_loss: 0.1100 - tf.__operators__.getitem_1_loss: 0.0957 - tf.__operators__.getitem_2_loss: 0.1516 51/51 [==============================] - 6s 42ms/step - loss: 0.1106 - tf.__operators__.getitem_loss: 0.1083 - tf.__operators__.getitem_1_loss: 0.0929 - tf.__operators__.getitem_2_loss: 0.1483 - val_loss: 0.0455 - val_tf.__operators__.getitem_loss: 0.0705 - val_tf.__operators__.getitem_1_loss: 0.0213 - val_tf.__operators__.getitem_2_loss: 0.0691 In [7]: ry, y, fy = primitive.produce(X=X) 1/2 [==============>...............] - ETA: 0s 2/2 [==============================] - 0s 10ms/step 1/2 [==============>...............] - ETA: 0s 2/2 [==============================] - 0s 11ms/step In [8]: print("Reverse Prediction: {}\nReconstructed Values: {}, Forward Prediction: {}".format(ry, y, fy)) Reverse Prediction: [[0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056] [0.73445056]] Reconstructed Values: [[[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]] [[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]] [[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]] ... [[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]] [[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]] [[0.84596941] [0.92662006] [0.98547457] ... [0.9669104 ] [0.91257842] [0.83867568]]], Forward Prediction: [[0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563] [0.73718563]]