The Signal Intelligence Project

Develop actionable time series analysis workflows with ease!

Github Join Slack community

Analyze, Interact, Decide

The Sintel ecosystem allows you to build advanced analytic workflows using Machine Learning,  RESTful APIs, and Visualization tools.

Code

from sigpro import SigPro
from sigpro.demo import (
  get_amplitude_demo,
  load_demo_primitives
)

data = get_amplitude_demo()

trans, aggre = load_demo_primitives()

sigpro = SigPro(
  transformations=trans,
  aggregations=aggre,
  keep_columns=True
)

sigpro.process_signal(data)

Code

from orion.data import load_signal
from orion import Orion

train_data = load_signal('S-1-train')

orion = Orion(pipeline='lstm_dynamic_threshold')

orion.fit(train_data)

new_data = load_signal('S-1-new')

orion.detect(new_data)

Code

from draco.demo import load_demo
from draco.pipeline import DracoPipeline
from sklearn.model_selection import train_test_split

target_times, readings = load_demo()

train, test = train_test_split(
  target_times, test_size=0.25, random_state=0)

test_targets = test.pop('target')

draco = DracoPipeline(
  'classes.normalize_dfs_xgb_classifier')

draco.fit(train, readings)

draco.predict(test, readings)

Code

from pyteller.data import load_data
from pyteller.core import Pyteller

train_data = load_data(
  'pyteller/data/AL_Weather_current.csv')
test_data = load_data(
  'pyteller/data/AL_Weather_input.csv')

pyteller = Pyteller(
  pipeline=('pyteller/pipelines/sandbox/'
            'LSTM/LSTM_offset.json'),
  pred_length=6, offset=1)

pyteller.fit(
  data=train_data,
  timestamp_col='valid', target_signal='tmpf',
  entity_col='station', entities='8A0')

pyteller.forecast(data=test_data)

Code

from orion.benchmark import benchmark

pipelines = [
  'arima',
  'lstm_dynamic_threshold'
]

signals = ['S-1', 'P-1']

metrics = ['f1', 'accuracy', 'recall', 'precision']

benchmark(
  pipelines=pipelines,
  datasets=signals,
  metrics=metrics,
  rank='f1'
)

Case Studies

Explore the case studies demonstrating Sintel in action.

SES

SES

Monitor satellite telemetry and solve an unsupervised time series anomaly detection problem.

Iberdrola

Iberdrola

Monitor wind energy production systems and solve a time series classification problem.

Open Source

Explore the Sintel ecosystem and its open source libraries. These libraries support a variety of time series tasks including generative modeling for time series, labeling, benchmarking, and user interactions.

Orion

Orion

Identifies anomalous time series segments.

Draco

Draco

Classifies time series segments into particular categories.

pyteller

pyteller

Predicts future values by analyzing past trends.

ml-stars

ml-stars

Stores a collection of pipelines that will be used by Orion, Draco, and Pyteller.

SigPro

SigPro

Featurizes time series with domain knowledge encoded for machine learning uses.

zephyr

zephyr

Prediction engineering methods for wind turbine maintenance.

MTV

MTV

Integrates a suite of visualization techniques to support complex analytic workflow with human-in-the-loop

Sintel

Sintel

Enables your team to build human-in-the-loop analytics workflow with predefined RESTFul APIs and MongoDB Schema.

TSGym

TSGym

Benchmarks machine learning models for different tasks.

No results found

Trusted by