Develop actionable time series analysis workflows with ease!
The Sintel ecosystem allows you to build advanced analytic workflows using Machine Learning, RESTful APIs, and Visualization tools.
Sintel
Code
from sigpro import SigPro
from sigpro.demo import (
get_amplitude_demo,
load_demo_primitives
)
data = get_amplitude_demo()
trans, aggre = load_demo_primitives()
sigpro = SigPro(
transformations=trans,
aggregations=aggre,
keep_columns=True
)
sigpro.process_signal(data)
Code
from orion.data import load_signal
from orion import Orion
train_data = load_signal('S-1-train')
orion = Orion(pipeline='lstm_dynamic_threshold')
orion.fit(train_data)
new_data = load_signal('S-1-new')
orion.detect(new_data)
Code
from draco.demo import load_demo
from draco.pipeline import DracoPipeline
from sklearn.model_selection import train_test_split
target_times, readings = load_demo()
train, test = train_test_split(
target_times, test_size=0.25, random_state=0)
test_targets = test.pop('target')
draco = DracoPipeline(
'classes.normalize_dfs_xgb_classifier')
draco.fit(train, readings)
draco.predict(test, readings)
Code
from pyteller.data import load_data
from pyteller.core import Pyteller
train_data = load_data(
'pyteller/data/AL_Weather_current.csv')
test_data = load_data(
'pyteller/data/AL_Weather_input.csv')
pyteller = Pyteller(
pipeline=('pyteller/pipelines/sandbox/'
'LSTM/LSTM_offset.json'),
pred_length=6, offset=1)
pyteller.fit(
data=train_data,
timestamp_col='valid', target_signal='tmpf',
entity_col='station', entities='8A0')
pyteller.forecast(data=test_data)
Code
from orion.benchmark import benchmark
pipelines = [
'arima',
'lstm_dynamic_threshold'
]
signals = ['S-1', 'P-1']
metrics = ['f1', 'accuracy', 'recall', 'precision']
benchmark(
pipelines=pipelines,
datasets=signals,
metrics=metrics,
rank='f1'
)
Explore the Sintel ecosystem and its open source libraries. These libraries support a variety of time series tasks including generative modeling for time series, labeling, benchmarking, and user interactions.
Orion
Identifies anomalous time series segments.
Draco
Classifies time series segments into particular categories.
pyteller
Predicts future values by analyzing past trends.
ml-stars
Stores a collection of pipelines that will be used by Orion, Draco, and Pyteller.
SigPro
Featurizes time series with domain knowledge encoded for machine learning uses.
zephyr
Prediction engineering methods for wind turbine maintenance.
MTV
Integrates a suite of visualization techniques to support complex analytic workflow with human-in-the-loop
Sintel
Enables your team to build human-in-the-loop analytics workflow with predefined RESTFul APIs and MongoDB Schema.
TSGym
Benchmarks machine learning models for different tasks.
No results found